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ABSTRACT

We report on the design and properties of a Nb;Sn wire strand developed for the
International Thermonuclear Experimental Reactor (ITER). The internal-tin process was
employed using 19 subelements, 6 spacers, and a Ta-containing barrier to separate the
superconducting core from the Cu stabilizer. Specific values of the four properties —
critical current density J, hysteresis losses, residual resistivity ratio RRR, and piece length
— required by the ITER specification are difficult to achieve simultaneously in one strand
design. This is particularly true when the strand is Cr plated to prevent sintering and to
provide interstrand resistance. Some aspects of conductor design and heat treatment, and
how these affect the various properties, including » value, are outlined.

INTRODUCTION

The International Thermonuclear Experimental Reactor (ITER) Joint Central Team
(JCT), consisting of representatives from Europe, Japan, the Russian Federation, and the
United States, has launched a program to manufacture two model coils. These consist of
(1) a central solenoid (CS) model coil with inserts requiring over 25 metric tons (t) of
NbsSn strand to be incorporated in 54 t of a thick-walled Incoloy 908 square jacket, and (2)
a toroidal field (TF) model coil requiring 3.6 t of Nb;Sn strand and 1 t of circular thin-
walled Incoloy 908 tube.

*Contribution of the National Institute of Standards and Technology, not subject to copyright.
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Table 1. ITER strand specifications, after Bruzzone et al.!

Property HP 1 HP 11

Strand diameter _ 0.8 mm 0.81 mm
Cr-plating thickness 2 pum 2 um
Cu/non-Cu ratio 1.5 1.5

RRR at 0 T, p(273 K)/p(20 K) > 100 > 100

Twist pitch (right hand) <10 mm < 10 mm
Non-Cu Jc at 12 T, 4.2 K, 0.1 pV/em > 700 A/mm’ > 550 A/mm’
Non-Cu hysteresis losses for+ 3 Tcycleat42K < 600 mJ/cm’ <200 mJ/cm’
n value at 12 T, 4.2 K, 0.1 uV/cm > 20 > 20

Two types of NbsSn strand have been specified, “High Performance I and II” (HP I
and HP II), and the properties required of each of these are outlined in Table 1. They are
effectively the same except for the critical current, J., and loss requirements.]

IGC, at the request of the U.S. Home Team, developed a strand to meet the HP 1
specification for initial use in the outer sections of the CS model coil. Stage III of this
development has been completed and 500 kg of strand made. This paper describes some of
the development work and results obtained.

STRAND DESIGN

The higher J. requirements of the HP I specification are more easily met by the
internal-tin process than by the bronze approach because of the higher concentration of Sn
around the filaments. This advantage is offset by the need for closer control of the strand
design. fabrication, and heat treatment because of their effect on the properties listed in
Table 1.

When Nb;Sn conductors are used in small DC magnets, factors such as piece length,
hysteresis loss. RRR of the stabilizing Cu, .and the effects of Cr plating are usually not
even considered. Critical current density is the property most frequently emphasized.,
although in magnets for magnetic resonance imaging applications, » values are also
specified. In the case of the ITER HP I specification. all requirements have to be met
simultaneously, including a high J..

One property which needs particular-attention in the IGC internal-tin process is piece
length. Once Sn is introduced into the conductor assembly. all subsequent processing, prior
to the final heat treatment. has to be performed cold. This means that the condition of the
components, particularly the hardness and the state of the surface. have to be carefully
controlled together with the processing parameters to ensure good bonding and thus
acceptable piece length.

Heat treatment is also more critical in the internal-tin process. While it is taking place.
not only are the superconducting properties being developed, but also Sn and Cu are
interdiffusing. This leads to the need for the heating and cooling rates to be controlled
throughout the cycle. in addition to the ultimate time and temperature of heat treatment.”
The importance of this, when heat-treating large magnets, must not be overlooked because
of the considerable mass of the structures involved. Although the ultimate aim is to have a
common heat treatment for all ITER conductors, this has not yet been achieved, nor have
the heat treatment ramp rates been specified.

The results of the early development work on the IGC ITER strand, carried out in
Stage II of the program. are reported in Ref. 3. Five different designs were explored in the
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Fig. 1. Schematic illustration of the strand used in Stage III of the ITER strand development program.

early work. and the effort was then concentrated on one of these. modified with three
different spacers. We concluded that a design with a spacer containing a Sn core and no
additional filaments gave a good piece length and met all the ITER HP I specifications. This
was the design chosen for Stage III. It is shown schematically in Fig. 1, and a cross section
before reaction is shown in Fig. 2. It is made up of 19 subelements, each containing 162
filaments of Nb 7.5.% Ta by mass, each 4.2 um in diameter, and containing six Sn-cored
spacers. The strand also contains a Ta-lined Nb barrier in the stabilizer which, in turn,
provides about 60.% Cu by volume to the overall strand.

Fig. 2. Cross section of ITER strand at 0.81 mm diameter, before reaction
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The principal design characteristic that distinguishes the IGC strand from other
internal-tin ITER strands is the single non-Cu area separated from the concentric Cu
stabilizer by one Ta-lined Nb barrier. Other designs have multiple non-Cu areas, each
separated by a barrier from the interconnected Cu area.

This single non-Cu area is intended to conserve space, reduce the chance of barrier
breakage, and reduce the tendency for interfilament contact or “bridging.” This contributes
to meeting the J. and hysteresis loss requirements while maintaining a good RRR after Cr
plating.

Stage III of the program required 500 kg of strand, which was made from four different
subelement billets and 23 restack assemblies. A restack assembly consisted of 19
subelement rods, six spacers, and a stabilizer tube.

TEST RESULTS ON THE STANDARD STRAND DESIGN

The choice of this strand design was based on a relatively small amount of test data on
a conductor of the same design as that is referred to here as the ITER standard. shown in
Table 2 with a superscript 3. These are the same data reported as design “c” in Table I of
Ref. 3. These J. data were later found to be inaccurate because of an incorrect field
calibration of the test magnet. This led to a series of calibration tests for critical current I,
involving NIST and several test laboratories, using a new holder designed by MIT and
detailed instructions from NIST on how to perform the tests. The corrected data are
shown in Table 2. This cooperative effort eliminated what had, up to that time, caused a
considerable variation in the I results obtained at different laboratories. IGC. using the test
facilities of the National Magnet Laboratory at MIT, emerged from this round of tests as
one of the laboratories whose results agreed with those of NIST. IGC also instituted an
extensive investigation of the measurement of Cu/non-Cu ratios. This led to a more reliable
conversion from I. to J. The J; test data presented in this paper on conductor of the
standard design were obtained by IGC at MIT; the hysteresis losses were measured at
NIST.

Although the data given in the Soft 18 meeting3 were presented as well within the HP |
specification, they were actually below the minimum J. specification when correctly tested.
The heat treatment cycle used at this time was 15°C/h to 375°C, hold at 375°C for 24 h
followed by a ramp at 75°C/h to 660°C and hold for 240 h. Based on the work described
in Ref. 2 the ramp rate was changed to 6°C/h to 660°C and hold for 240 h and this brought
the material back into the HP I J_ specification.

As mentioned above. four different subelements were used in the Stage 111 work. Each
of these contained Nb 7.5 % Ta by mass rods, 8.13 mm in diameter. froi three different
heats. Subelements 0 and 1 were made from rods from the same heat but different batches.
The main differences in the heats were in the grain sizes and the hardness of the starting
rods. The rods in subelement 4 were harder and had a finer grain size. They also showed a
wider variation in both grain size and hardness but, with one or two minor exceptions, both
these properties were within product specifications.

The subelement billets were all prepared in the same manner and processed under
identical conditions. Heat treatment was carried out in the same furnace and under the same
conditions: a ramp rate of 6°C/h, 240 h at 660°C, and a cooling rate of 25°C/h. In Fig. 3, the
12-T Jc and loss properties obtained were grouped according to the subelement used.

Material from subelement billets 0 and 1 showed slightly higher losses than material
from the other two subelements, but all the 12-T J, values of the restacks made from these
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Table 2. Test data from earlier work >

Sample Designation Jo (A/mm*) at  J. (A/mm’) at n Value n Value Loss (mJ/cm”)
12T 12 T (NIST) (NIST)
15T 7453 655 267 20 479
22 7553 683 353 22 433
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Fig. 3. Relationship between the J. and the losses of the strand used in Stage 111 of the ITER
development program.
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Fig. 4. Relationship between the J. and » value for the strand used in Stage Illof the ITER development

program.
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subelements were above the specification and varied 5% about 740 A/mm? whereas
thelosses varied only #3% about 440 mJ/cm®. Material from subelement billet 4 showed
slightly higher J; and significantly lower losses, but the spread in values is approximately
the same as in the material made from the other subelements. Material from subelement
billet 3 showed intermedite losses, but J, values were below the specification.

The n values plotted against J. are shown in Fig. 4. Although there is scatter in the
data, all the results are above the specified value of 20. The highest values were obtained in
material made from subelements 0 and 1. The lowest values are the ones associated with
the material from subelement 3. The subelement 4 values were intermediate between the
other two groups.

Only a limited number of wire breaks occurred during the manufacture of material
made from restacks employing subelements 0, 1 and 3. Several unbroken lengths of
>5000m were produced. The restacks from subelement 4 experienced greater wire breakage.
In an effort to reduce this, CuSn spacers were replaced by pure Cu spacers in restacks 17-1
and 17-3. Breakage.was not reduced significantly however. but the J. was lowered
somewhat.

After Cr plating and heat treatment for 240 h at 660°C with a ramp rate of 6°C/h and a
cooling rate of 25°C/h, each restack must be tested for RRR. So far. only representative
samples have been tested from restacks made with subelements 0. 1 and 3. These are
restacks 03. 05 and 12 and the RRR values obtained at Brookhaven National Laboratory
were 115,135 and 129. respectively. All are above the minimum of the ITER specification.

“HIGH DENSITY” MATERIAL

It 1s obvious from the above that the internal-tin process is quite sensitive to the
condition of the material in the subelement or to. as yet unknown. minor changes in the
subelement design or manufacture. If our aim is to reliably and economically produce large
quantities of material to the HP 1 specification. we must determine the cause of this
variability. We are now carrying out investigations with this aim in mind.” but meanwhile. a
practical. if less elegant. solution is to increase the J, properties of all the material. In this
way. even material from the worst subelements would still meet all the ITER HP 1
specifications. While such J, increases will also increase the losses. Fig. 3 shows that these
losses can be increased in all the subelements substantially before the HP 1 specification
limit of 600 mJ/cm® is exceeded.

One way of improving the current carrying capacity of the existing material is to
increase the time at 660°C from 240 h to 264 h. This has been shown. in the past. to
increase the J. about 5%. It does. however. allow increased Cr diffusion to take place and
the RRR begins to approach the minimum of 100 in the Cr-plated strand.

A second way of improving the overall J, is to redesign the subelement billet so as to
increase the amount of superconductor in the non-Cu area. At the time that we became
aware that a low J. may be obtained from material made from subelement 3. we had
available at IGC “high density™ subelement material made for another application. We
decided to make a 60 vol.% Cu restack to determine how closely the HP 1 requirements
could be approached using such material. The term “high density™ refers to an increase in
the amount of Nb 7.5 wt.% Ta alloy in the non-Cu portion of the conductor. The high
density material has more superconductor than does the standard ITER strand reported
above. This density increase was accomplished by simply enlarging the rod diameter by
8% and increasing the size of the Sn pool slightly. This diameter change, of course,
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decreases the spacing between the filaments and increases the extent to which filament
contact occurs. Decreased spacing, however, may have a very important additional effect:
The closely spaced filaments support one another, thus reducing “sausaging” which in turn
raises J. and the » values in a manner similar to that reported almost a decade ago for
NbTi.*

After a heat treatment of 240 h at 660°C with a ramp rate of 6°C/h, the high density
material had a J, of 893 A/mm? in the non-Cu and a loss of 690 mJ/cm’. It is obvious that
the amount of superconductor was increased more than necessary and the ideal solution
would be to use an intermediate-sized rod. We are carrying out such experiments at the
present time.

Another possible approach exists. however, to bring the properties of the high density
material into the HP 1 specification: change the heat treatment. When one has a material
with a higher J. than is required. it is possible to lower both the J. and the losses to some
extent by simply changing the heat treatment conditions. Doing this lowers the extent to
which chromium diffusion takes place and this enables a high RRR to be maintained. It is
much easier to move from the top right hand corner to the center of Fig. 5 without a design
change than from the bottom left to the center when limitations exist on how aggressive the
heat treatment can be.

Originally. the ITER JCT proposed that all Nb;Sn strands for the model coils should
have a common heat treatment, so that materials from different vendors could be mixed in
the various coils. The heat treatment suggested was 650°C for 175 h. IGC found that, with
the standard material. this heat treatment did not give the desired J, and we therefore
employed the one described above. A limitation on the extent to which the time and
temperature can be further increased is imposed by the necessity to maintain the value of
the RRR above 100 for heat-treated and Cr-plated strand.

The high density material gives us the opportunity to lower the time and temperature
and vary the ramp rate. This was done in a series of steps and the results are shown in Fig.
5. Reducing the time at 660°C from 240 h to 175 h while maintaining the slow ramp rate
appeared to have a similar effect to lowering the temperature from 660°C to 650°C while
maintaining the time at 240 h. that is. little affect on the losses but a reduction in J..
Lowering the time at 650°C from 240 h to 175 h appeared to change the J. less than the
losses. Increasing the ramp rate to 75°C/h lowers both losses and J. and almost brought the
“high density™ material into the HP 1 specification with the JCT recommended heat
treatment. Decreasing the time at 650°C to 79 h produced a material meeting all the HP 1
specifications within a reasonable margin. When the material was heat treated for 20 h at
700°C. it gave even better J. with lower loss values, but the RRR on Cr-plated and heat-
treated samples has not yet been determined.

Whether or not a ramp rate of 75°C/h is practical for the full sized ITER coils is
uncertain. but the ramp rate is an important variable that must be specified and controlled if
the data on the strand are to be meaningful for the magnet performance. All the “high
density” data presented earlier in this paper. were obtained from one restack of one
subelement billet. Most of the 1. measurements and all the loss measurements on this high
density material were carried out at NIST.

EFFECT OF VARIOUS PARAMETERS ON N VALUE

In addition to the higher J. values. the high density material has another improved
property over the standard material. This is shown in Fig. 6, where n values for the high
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Fig. 5. Relationship between the J.and the losses of “high density” strand after various heat treatments
compared with that of standard material for Stage I1I of the ITER development program.

density material after various heat treatments are plotted against 12-T J.. As the

aggressiveness of the heat treatment decreases, so does J. and n but both are higher than the
average of the data for the standard material when the heat treatment is the same, 660°C
for 240 h and a ramp rate of 6°C/h. The data for the standard material were obtained by

averaging the results from the same samples as those shown in Fig. 4. This increased n
value is to be expected as the filaments are larger, but possibly the fact that the spacing
between these filaments is also less may be of some significance. This has been shown
earlier to be a very important factor controlling the “sausaging™ of filaments in
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Fig. 6. Relationship between » value and J. for “high density” strand after various heat treatments compared
with that of standard material after 660°C for 240 h.
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Fig. 7. Relationship between n value and field for “high density” strand after various heat treatments
compared with that of standard material after 660°C for 240 h.

multifilamentary NbTi wire.*”. In Nb;Sn, where the spacing has to be much greater than in
NbTi in order to reduce filament contact, the effect may not be as great. but obviously it
deserves further investigation. In Nb;Sn, as with NbTi, » is often taken as a measure of
filament quality, particularly by those concerned with persistence in NMR-type magnets.

Some of these users also specify that partial reaction be used in order to keep a ductile
Nb core in the filaments to improve mechanical properties and assist in the making of
persistent joints. The data shown in Fig. 6 demonstate that these two requirements may
lead to erroneous conclusions as they indicate that, as soon as the heat treatment falls
below that for complete reaction. the » value falls rapidly.

A wide range of n values can be obtained on identical wire made from the same
subelement and restack by varying the heat treatment. The » value is determined by both
the longitudinal uniformity of the starting Nb 7.5 % Ta by mass filaments and the
longitudinal uniformity of the reacted part of the filaments. These data indicate that
partially reacted filaments must have some nonuniformity along the length. As the time and
temperature are increased, a more uniform degree of reaction can be assumed and the »
values improve. Similar effects of heat treatment on » value exist at other fields as shown in
Fig. 7.

CONCLUSIONS

IGC has successfully completed Stage I1I of the ITER strand development program by
producing 500 kg of strand meeting the HP I specification and is now starting on Stage IV,
the production of the material for the model coil.

In Stage 111, the criticality of many of the design, heat treatment, and manufacturing
variables. particularly for the subelements, have been determined. IGC is working with the
University of Wisconsin and an alloy manufacturer, to establish reliable quality assurance
specifications for both raw materials and the various processing parameters to ensure less
variability in the strand properties.
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The importance of specifying the ramp rate to be used in the heat treatment of the test
samples, to simulate that which can be achieved with both the model coils and the full-size

coils, is obvious from the results reported. It is also important to specify the maximum and
minimum times at temperature since too short a time will not be practical for large coils and

too long a time may result in RRR degradation and possibly cause other problems. These
latter constraints apply irrespective of the Nbs;Sn manufacturing process used.

N values can be influenced significantly by not only strand design but also heat
treatment procedures and they should not be considered simply as measures of filament
“sausaging.” The » value is determined by both the longitudinal uniformity of the starting
filaments and the longitudinal uniformity of the reacted part of the filaments.
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